3.4.37 \(\int \frac {(f+g x^2)^2 \log (c (d+e x^2)^p)}{x^8} \, dx\) [337]

3.4.37.1 Optimal result
3.4.37.2 Mathematica [C] (verified)
3.4.37.3 Rubi [A] (verified)
3.4.37.4 Maple [A] (verified)
3.4.37.5 Fricas [A] (verification not implemented)
3.4.37.6 Sympy [F(-1)]
3.4.37.7 Maxima [F(-2)]
3.4.37.8 Giac [A] (verification not implemented)
3.4.37.9 Mupad [B] (verification not implemented)

3.4.37.1 Optimal result

Integrand size = 25, antiderivative size = 252 \[ \int \frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{x^8} \, dx=-\frac {2 e f^2 p}{35 d x^5}+\frac {2 e^2 f^2 p}{21 d^2 x^3}-\frac {4 e f g p}{15 d x^3}-\frac {2 e^3 f^2 p}{7 d^3 x}+\frac {4 e^2 f g p}{5 d^2 x}-\frac {2 e g^2 p}{3 d x}-\frac {2 e^{7/2} f^2 p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{7 d^{7/2}}+\frac {4 e^{5/2} f g p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{5 d^{5/2}}-\frac {2 e^{3/2} g^2 p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{3 d^{3/2}}-\frac {f^2 \log \left (c \left (d+e x^2\right )^p\right )}{7 x^7}-\frac {2 f g \log \left (c \left (d+e x^2\right )^p\right )}{5 x^5}-\frac {g^2 \log \left (c \left (d+e x^2\right )^p\right )}{3 x^3} \]

output
-2/35*e*f^2*p/d/x^5+2/21*e^2*f^2*p/d^2/x^3-4/15*e*f*g*p/d/x^3-2/7*e^3*f^2* 
p/d^3/x+4/5*e^2*f*g*p/d^2/x-2/3*e*g^2*p/d/x-2/7*e^(7/2)*f^2*p*arctan(x*e^( 
1/2)/d^(1/2))/d^(7/2)+4/5*e^(5/2)*f*g*p*arctan(x*e^(1/2)/d^(1/2))/d^(5/2)- 
2/3*e^(3/2)*g^2*p*arctan(x*e^(1/2)/d^(1/2))/d^(3/2)-1/7*f^2*ln(c*(e*x^2+d) 
^p)/x^7-2/5*f*g*ln(c*(e*x^2+d)^p)/x^5-1/3*g^2*ln(c*(e*x^2+d)^p)/x^3
 
3.4.37.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.02 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.64 \[ \int \frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{x^8} \, dx=-\frac {2 e f^2 p \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},1,-\frac {3}{2},-\frac {e x^2}{d}\right )}{35 d x^5}-\frac {4 e f g p \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},-\frac {e x^2}{d}\right )}{15 d x^3}-\frac {2 e g^2 p \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},-\frac {e x^2}{d}\right )}{3 d x}-\frac {f^2 \log \left (c \left (d+e x^2\right )^p\right )}{7 x^7}-\frac {2 f g \log \left (c \left (d+e x^2\right )^p\right )}{5 x^5}-\frac {g^2 \log \left (c \left (d+e x^2\right )^p\right )}{3 x^3} \]

input
Integrate[((f + g*x^2)^2*Log[c*(d + e*x^2)^p])/x^8,x]
 
output
(-2*e*f^2*p*Hypergeometric2F1[-5/2, 1, -3/2, -((e*x^2)/d)])/(35*d*x^5) - ( 
4*e*f*g*p*Hypergeometric2F1[-3/2, 1, -1/2, -((e*x^2)/d)])/(15*d*x^3) - (2* 
e*g^2*p*Hypergeometric2F1[-1/2, 1, 1/2, -((e*x^2)/d)])/(3*d*x) - (f^2*Log[ 
c*(d + e*x^2)^p])/(7*x^7) - (2*f*g*Log[c*(d + e*x^2)^p])/(5*x^5) - (g^2*Lo 
g[c*(d + e*x^2)^p])/(3*x^3)
 
3.4.37.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 252, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {2926, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{x^8} \, dx\)

\(\Big \downarrow \) 2926

\(\displaystyle \int \left (\frac {f^2 \log \left (c \left (d+e x^2\right )^p\right )}{x^8}+\frac {2 f g \log \left (c \left (d+e x^2\right )^p\right )}{x^6}+\frac {g^2 \log \left (c \left (d+e x^2\right )^p\right )}{x^4}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 e^{7/2} f^2 p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{7 d^{7/2}}+\frac {4 e^{5/2} f g p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{5 d^{5/2}}-\frac {2 e^{3/2} g^2 p \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{3 d^{3/2}}-\frac {f^2 \log \left (c \left (d+e x^2\right )^p\right )}{7 x^7}-\frac {2 f g \log \left (c \left (d+e x^2\right )^p\right )}{5 x^5}-\frac {g^2 \log \left (c \left (d+e x^2\right )^p\right )}{3 x^3}-\frac {2 e^3 f^2 p}{7 d^3 x}+\frac {2 e^2 f^2 p}{21 d^2 x^3}+\frac {4 e^2 f g p}{5 d^2 x}-\frac {2 e f^2 p}{35 d x^5}-\frac {4 e f g p}{15 d x^3}-\frac {2 e g^2 p}{3 d x}\)

input
Int[((f + g*x^2)^2*Log[c*(d + e*x^2)^p])/x^8,x]
 
output
(-2*e*f^2*p)/(35*d*x^5) + (2*e^2*f^2*p)/(21*d^2*x^3) - (4*e*f*g*p)/(15*d*x 
^3) - (2*e^3*f^2*p)/(7*d^3*x) + (4*e^2*f*g*p)/(5*d^2*x) - (2*e*g^2*p)/(3*d 
*x) - (2*e^(7/2)*f^2*p*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(7*d^(7/2)) + (4*e^(5/ 
2)*f*g*p*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(5*d^(5/2)) - (2*e^(3/2)*g^2*p*ArcTa 
n[(Sqrt[e]*x)/Sqrt[d]])/(3*d^(3/2)) - (f^2*Log[c*(d + e*x^2)^p])/(7*x^7) - 
 (2*f*g*Log[c*(d + e*x^2)^p])/(5*x^5) - (g^2*Log[c*(d + e*x^2)^p])/(3*x^3)
 

3.4.37.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2926
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m 
_.)*((f_) + (g_.)*(x_)^(s_))^(r_.), x_Symbol] :> Int[ExpandIntegrand[(a + b 
*Log[c*(d + e*x^n)^p])^q, x^m*(f + g*x^s)^r, x], x] /; FreeQ[{a, b, c, d, e 
, f, g, m, n, p, q, r, s}, x] && IGtQ[q, 0] && IntegerQ[m] && IntegerQ[r] & 
& IntegerQ[s]
 
3.4.37.4 Maple [A] (verified)

Time = 2.39 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.66

method result size
parts \(-\frac {g^{2} \ln \left (c \left (e \,x^{2}+d \right )^{p}\right )}{3 x^{3}}-\frac {2 f g \ln \left (c \left (e \,x^{2}+d \right )^{p}\right )}{5 x^{5}}-\frac {f^{2} \ln \left (c \left (e \,x^{2}+d \right )^{p}\right )}{7 x^{7}}-\frac {2 p e \left (-\frac {-35 g^{2} d^{2}+42 d e f g -15 e^{2} f^{2}}{d^{3} x}+\frac {3 f^{2}}{d \,x^{5}}+\frac {f \left (14 d g -5 e f \right )}{d^{2} x^{3}}+\frac {e \left (35 g^{2} d^{2}-42 d e f g +15 e^{2} f^{2}\right ) \arctan \left (\frac {x e}{\sqrt {d e}}\right )}{d^{3} \sqrt {d e}}\right )}{105}\) \(167\)
risch \(-\frac {\left (35 g^{2} x^{4}+42 f g \,x^{2}+15 f^{2}\right ) \ln \left (\left (e \,x^{2}+d \right )^{p}\right )}{105 x^{7}}-\frac {30 \ln \left (c \right ) d^{4} f^{2}-70 \sqrt {-d e}\, p e \ln \left (-e x +\sqrt {-d e}\right ) g^{2} d^{2} x^{7}+70 \sqrt {-d e}\, p e \ln \left (-e x -\sqrt {-d e}\right ) g^{2} d^{2} x^{7}+84 \sqrt {-d e}\, p \,e^{2} \ln \left (-e x +\sqrt {-d e}\right ) f g d \,x^{7}-84 \sqrt {-d e}\, p \,e^{2} \ln \left (-e x -\sqrt {-d e}\right ) f g d \,x^{7}+30 \sqrt {-d e}\, p \,e^{3} \ln \left (-e x -\sqrt {-d e}\right ) f^{2} x^{7}-35 i \pi \,d^{4} g^{2} x^{4} \operatorname {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right ) \operatorname {csgn}\left (i c \right )+140 d^{3} e \,g^{2} p \,x^{6}+60 d \,e^{3} f^{2} p \,x^{6}-20 d^{2} e^{2} f^{2} p \,x^{4}+12 d^{3} e \,f^{2} p \,x^{2}-168 d^{2} e^{2} f g p \,x^{6}+56 d^{3} e f g p \,x^{4}+84 \ln \left (c \right ) d^{4} f g \,x^{2}-42 i \pi \,d^{4} f g \,x^{2} \operatorname {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right ) \operatorname {csgn}\left (i c \right )+42 i \pi \,d^{4} f g \,x^{2} \operatorname {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{2}+42 i \pi \,d^{4} f g \,x^{2} {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{2} \operatorname {csgn}\left (i c \right )+70 \ln \left (c \right ) d^{4} g^{2} x^{4}-30 \sqrt {-d e}\, p \,e^{3} \ln \left (-e x +\sqrt {-d e}\right ) f^{2} x^{7}-15 i \pi \,d^{4} f^{2} \operatorname {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right ) \operatorname {csgn}\left (i c \right )+35 i \pi \,d^{4} g^{2} x^{4} {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{2} \operatorname {csgn}\left (i c \right )+35 i \pi \,d^{4} g^{2} x^{4} \operatorname {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{2}-42 i \pi \,d^{4} f g \,x^{2} {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{3}-15 i \pi \,d^{4} f^{2} {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{3}-35 i \pi \,d^{4} g^{2} x^{4} {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{3}+15 i \pi \,d^{4} f^{2} \operatorname {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{2}+15 i \pi \,d^{4} f^{2} {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{2} \operatorname {csgn}\left (i c \right )}{210 d^{4} x^{7}}\) \(784\)

input
int((g*x^2+f)^2*ln(c*(e*x^2+d)^p)/x^8,x,method=_RETURNVERBOSE)
 
output
-1/3*g^2*ln(c*(e*x^2+d)^p)/x^3-2/5*f*g*ln(c*(e*x^2+d)^p)/x^5-1/7*f^2*ln(c* 
(e*x^2+d)^p)/x^7-2/105*p*e*(-1/d^3*(-35*d^2*g^2+42*d*e*f*g-15*e^2*f^2)/x+3 
*f^2/d/x^5+f*(14*d*g-5*e*f)/d^2/x^3+e*(35*d^2*g^2-42*d*e*f*g+15*e^2*f^2)/d 
^3/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2)))
 
3.4.37.5 Fricas [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 429, normalized size of antiderivative = 1.70 \[ \int \frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{x^8} \, dx=\left [\frac {{\left (15 \, e^{3} f^{2} - 42 \, d e^{2} f g + 35 \, d^{2} e g^{2}\right )} p x^{7} \sqrt {-\frac {e}{d}} \log \left (\frac {e x^{2} - 2 \, d x \sqrt {-\frac {e}{d}} - d}{e x^{2} + d}\right ) - 6 \, d^{2} e f^{2} p x^{2} - 2 \, {\left (15 \, e^{3} f^{2} - 42 \, d e^{2} f g + 35 \, d^{2} e g^{2}\right )} p x^{6} + 2 \, {\left (5 \, d e^{2} f^{2} - 14 \, d^{2} e f g\right )} p x^{4} - {\left (35 \, d^{3} g^{2} p x^{4} + 42 \, d^{3} f g p x^{2} + 15 \, d^{3} f^{2} p\right )} \log \left (e x^{2} + d\right ) - {\left (35 \, d^{3} g^{2} x^{4} + 42 \, d^{3} f g x^{2} + 15 \, d^{3} f^{2}\right )} \log \left (c\right )}{105 \, d^{3} x^{7}}, -\frac {2 \, {\left (15 \, e^{3} f^{2} - 42 \, d e^{2} f g + 35 \, d^{2} e g^{2}\right )} p x^{7} \sqrt {\frac {e}{d}} \arctan \left (x \sqrt {\frac {e}{d}}\right ) + 6 \, d^{2} e f^{2} p x^{2} + 2 \, {\left (15 \, e^{3} f^{2} - 42 \, d e^{2} f g + 35 \, d^{2} e g^{2}\right )} p x^{6} - 2 \, {\left (5 \, d e^{2} f^{2} - 14 \, d^{2} e f g\right )} p x^{4} + {\left (35 \, d^{3} g^{2} p x^{4} + 42 \, d^{3} f g p x^{2} + 15 \, d^{3} f^{2} p\right )} \log \left (e x^{2} + d\right ) + {\left (35 \, d^{3} g^{2} x^{4} + 42 \, d^{3} f g x^{2} + 15 \, d^{3} f^{2}\right )} \log \left (c\right )}{105 \, d^{3} x^{7}}\right ] \]

input
integrate((g*x^2+f)^2*log(c*(e*x^2+d)^p)/x^8,x, algorithm="fricas")
 
output
[1/105*((15*e^3*f^2 - 42*d*e^2*f*g + 35*d^2*e*g^2)*p*x^7*sqrt(-e/d)*log((e 
*x^2 - 2*d*x*sqrt(-e/d) - d)/(e*x^2 + d)) - 6*d^2*e*f^2*p*x^2 - 2*(15*e^3* 
f^2 - 42*d*e^2*f*g + 35*d^2*e*g^2)*p*x^6 + 2*(5*d*e^2*f^2 - 14*d^2*e*f*g)* 
p*x^4 - (35*d^3*g^2*p*x^4 + 42*d^3*f*g*p*x^2 + 15*d^3*f^2*p)*log(e*x^2 + d 
) - (35*d^3*g^2*x^4 + 42*d^3*f*g*x^2 + 15*d^3*f^2)*log(c))/(d^3*x^7), -1/1 
05*(2*(15*e^3*f^2 - 42*d*e^2*f*g + 35*d^2*e*g^2)*p*x^7*sqrt(e/d)*arctan(x* 
sqrt(e/d)) + 6*d^2*e*f^2*p*x^2 + 2*(15*e^3*f^2 - 42*d*e^2*f*g + 35*d^2*e*g 
^2)*p*x^6 - 2*(5*d*e^2*f^2 - 14*d^2*e*f*g)*p*x^4 + (35*d^3*g^2*p*x^4 + 42* 
d^3*f*g*p*x^2 + 15*d^3*f^2*p)*log(e*x^2 + d) + (35*d^3*g^2*x^4 + 42*d^3*f* 
g*x^2 + 15*d^3*f^2)*log(c))/(d^3*x^7)]
 
3.4.37.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{x^8} \, dx=\text {Timed out} \]

input
integrate((g*x**2+f)**2*ln(c*(e*x**2+d)**p)/x**8,x)
 
output
Timed out
 
3.4.37.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{x^8} \, dx=\text {Exception raised: ValueError} \]

input
integrate((g*x^2+f)^2*log(c*(e*x^2+d)^p)/x^8,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.4.37.8 Giac [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 207, normalized size of antiderivative = 0.82 \[ \int \frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{x^8} \, dx=-\frac {2 \, {\left (15 \, e^{4} f^{2} p - 42 \, d e^{3} f g p + 35 \, d^{2} e^{2} g^{2} p\right )} \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{105 \, \sqrt {d e} d^{3}} - \frac {{\left (35 \, g^{2} p x^{4} + 42 \, f g p x^{2} + 15 \, f^{2} p\right )} \log \left (e x^{2} + d\right )}{105 \, x^{7}} - \frac {30 \, e^{3} f^{2} p x^{6} - 84 \, d e^{2} f g p x^{6} + 70 \, d^{2} e g^{2} p x^{6} - 10 \, d e^{2} f^{2} p x^{4} + 28 \, d^{2} e f g p x^{4} + 35 \, d^{3} g^{2} x^{4} \log \left (c\right ) + 6 \, d^{2} e f^{2} p x^{2} + 42 \, d^{3} f g x^{2} \log \left (c\right ) + 15 \, d^{3} f^{2} \log \left (c\right )}{105 \, d^{3} x^{7}} \]

input
integrate((g*x^2+f)^2*log(c*(e*x^2+d)^p)/x^8,x, algorithm="giac")
 
output
-2/105*(15*e^4*f^2*p - 42*d*e^3*f*g*p + 35*d^2*e^2*g^2*p)*arctan(e*x/sqrt( 
d*e))/(sqrt(d*e)*d^3) - 1/105*(35*g^2*p*x^4 + 42*f*g*p*x^2 + 15*f^2*p)*log 
(e*x^2 + d)/x^7 - 1/105*(30*e^3*f^2*p*x^6 - 84*d*e^2*f*g*p*x^6 + 70*d^2*e* 
g^2*p*x^6 - 10*d*e^2*f^2*p*x^4 + 28*d^2*e*f*g*p*x^4 + 35*d^3*g^2*x^4*log(c 
) + 6*d^2*e*f^2*p*x^2 + 42*d^3*f*g*x^2*log(c) + 15*d^3*f^2*log(c))/(d^3*x^ 
7)
 
3.4.37.9 Mupad [B] (verification not implemented)

Time = 1.66 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.59 \[ \int \frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{x^8} \, dx=-\frac {\frac {6\,e\,f^2\,p}{d}+\frac {2\,e\,p\,x^4\,\left (35\,d^2\,g^2-42\,d\,e\,f\,g+15\,e^2\,f^2\right )}{d^3}+\frac {2\,e\,f\,p\,x^2\,\left (14\,d\,g-5\,e\,f\right )}{d^2}}{105\,x^5}-\frac {\ln \left (c\,{\left (e\,x^2+d\right )}^p\right )\,\left (\frac {f^2}{7}+\frac {2\,f\,g\,x^2}{5}+\frac {g^2\,x^4}{3}\right )}{x^7}-\frac {2\,e^{3/2}\,p\,\mathrm {atan}\left (\frac {\sqrt {e}\,x}{\sqrt {d}}\right )\,\left (35\,d^2\,g^2-42\,d\,e\,f\,g+15\,e^2\,f^2\right )}{105\,d^{7/2}} \]

input
int((log(c*(d + e*x^2)^p)*(f + g*x^2)^2)/x^8,x)
 
output
- ((6*e*f^2*p)/d + (2*e*p*x^4*(35*d^2*g^2 + 15*e^2*f^2 - 42*d*e*f*g))/d^3 
+ (2*e*f*p*x^2*(14*d*g - 5*e*f))/d^2)/(105*x^5) - (log(c*(d + e*x^2)^p)*(f 
^2/7 + (g^2*x^4)/3 + (2*f*g*x^2)/5))/x^7 - (2*e^(3/2)*p*atan((e^(1/2)*x)/d 
^(1/2))*(35*d^2*g^2 + 15*e^2*f^2 - 42*d*e*f*g))/(105*d^(7/2))